Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.762
Filtrar
1.
Anaerobe ; 86: 102821, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336258

RESUMO

BACKGROUND: Clostridioides difficile (formerly Clostridium difficile) is well-documented in Europe and North America to be a common cause of healthcare-associated gastrointestinal tract infections. In contrast, C difficile infection (CDI) is infrequently reported in literature from Asia, which may reflect a lack of clinician awareness. We conducted a narrative review to better understand CDI burden in Asia. METHODS: We searched the PubMed database for English language articles related to C difficile, Asia, epidemiology, and molecular characteristics (eg, ribotype, antimicrobial resistance). RESULTS: Fifty-eight articles that met eligibility criteria were included. C difficile prevalence ranged from 7.1% to 45.1 % of hospitalized patients with diarrhea, and toxigenic strains among all C difficile in these patients ranged from 68.2% to 91.9 % in China and from 39.0% to 60.0 % outside of China. Widespread C difficile ribotypes were RT017, RT014/020, RT012, and RT002. Recurrence in patients with CDI ranged from 3.0% to 17.2 %. Patients with CDI typically had prior antimicrobial use recently. High rates of resistance to ciprofloxacin, clindamycin, and erythromycin were frequently reported. CONCLUSION: The regional CDI burden in Asia is still incompletely documented, seemingly due to low awareness and limited laboratory testing. Despite this apparent under recognition, the current CDI burden highlights the need for broader surveillance and for application of preventative measures against CDI in Asia.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Clostridioides difficile/genética , Clostridioides difficile/isolamento & purificação , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/classificação , Prevalência , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Sudeste Asiático/epidemiologia , Ribotipagem , Farmacorresistência Bacteriana , Diarreia/microbiologia , Diarreia/epidemiologia
2.
Adv Exp Med Biol ; 1435: 249-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38175479

RESUMO

Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.


Assuntos
Antibacterianos , Biofilmes , Clostridioides difficile , Farmacorresistência Bacteriana , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia
3.
ACS Chem Biol ; 18(4): 734-745, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37082867

RESUMO

S-Adenosyl-l-methionine (SAM) analogs are adaptable tools for studying and therapeutically inhibiting SAM-dependent methyltransferases (MTases). Some MTases play significant roles in host-pathogen interactions, one of which is Clostridioides difficile-specific DNA adenine MTase (CamA). CamA is needed for efficient sporulation and alters persistence in the colon. To discover potent and selective CamA inhibitors, we explored modifications of the solvent-exposed edge of the SAM adenosine moiety. Starting from the two parental compounds (6e and 7), we designed an adenosine analog (11a) carrying a 3-phenylpropyl moiety at the adenine N6-amino group, and a 3-(cyclohexylmethyl guanidine)-ethyl moiety at the sulfur atom off the ribose ring. Compound 11a (IC50 = 0.15 µM) is 10× and 5× more potent against CamA than 6e and 7, respectively. The structure of the CamA-DNA-inhibitor complex revealed that 11a adopts a U-shaped conformation, with the two branches folded toward each other, and the aliphatic and aromatic rings at the two ends interacting with one another. 11a occupies the entire hydrophobic surface (apparently unique to CamA) next to the adenosine binding site. Our work presents a hybrid knowledge-based and fragment-based approach to generating CamA inhibitors that would be chemical agents to examine the mechanism(s) of action and therapeutic potentials of CamA in C. difficile infection.


Assuntos
Adenosina , Clostridioides difficile , Proteína-Arginina N-Metiltransferases , DNA Metiltransferases Sítio Específica (Adenina-Específica) , Adenina , Adenosina/análogos & derivados , Adenosina/farmacologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/metabolismo , Infecções por Clostridium/tratamento farmacológico , DNA , Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , S-Adenosilmetionina/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/antagonistas & inibidores
4.
Nucleic Acids Res ; 51(9): 4536-4554, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36951104

RESUMO

Genome-encoded antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F subfamily (ARE-ABCFs) mediate intrinsic resistance in diverse Gram-positive bacteria. The diversity of chromosomally-encoded ARE-ABCFs is far from being fully experimentally explored. Here we characterise phylogenetically diverse genome-encoded ABCFs from Actinomycetia (Ard1 from Streptomyces capreolus, producer of the nucleoside antibiotic A201A), Bacilli (VmlR2 from soil bacterium Neobacillus vireti) and Clostridia (CplR from Clostridium perfringens, Clostridium sporogenes and Clostridioides difficile). We demonstrate that Ard1 is a narrow spectrum ARE-ABCF that specifically mediates self-resistance against nucleoside antibiotics. The single-particle cryo-EM structure of a VmlR2-ribosome complex allows us to rationalise the resistance spectrum of this ARE-ABCF that is equipped with an unusually long antibiotic resistance determinant (ARD) subdomain. We show that CplR contributes to intrinsic pleuromutilin, lincosamide and streptogramin A resistance in Clostridioides, and demonstrate that C. difficile CplR (CDIF630_02847) synergises with the transposon-encoded 23S ribosomal RNA methyltransferase Erm to grant high levels of antibiotic resistance to the C. difficile 630 clinical isolate. Finally, assisted by uORF4u, our novel tool for detection of upstream open reading frames, we dissect the translational attenuation mechanism that controls the induction of cplR expression upon an antibiotic challenge.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Genes Bacterianos , Bactérias Gram-Positivas , Antibacterianos/farmacologia , Antibacterianos/química , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Nucleosídeos/química , Nucleosídeos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Genes Bacterianos/genética , Clostridium/efeitos dos fármacos , Clostridium/genética , Microscopia Crioeletrônica
5.
PLoS One ; 18(1): e0280676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662820

RESUMO

Clinical isolates of Clostridioides difficile sometimes exhibit multidrug resistance and cause diarrhea after antibiotic administration. Metronidazole and vancomycin are often used as therapeutic agents, but resistance to these antibiotics has been found clinically. Therefore, the development of alternative antimicrobial agents is needed. Nisin A, produced by Lactococcus lactis, has been demonstrated to be effective against C. difficile infection. In this study, we evaluated the susceptibility of 11 C. difficile clinical isolates to nisin A and found that they could be divided into 2 groups: high and low susceptibility. Since CprABC and DltDABC, which are responsible for nisin A efflux and cell surface charge, respectively, have been reported to be related to nisin A susceptibility, we investigated the expression of cprA and dltA among the 11 strains. cprA expression in all strains was induced by nisin A, but dltA expression was not. The expression levels of both genes did not correlate with nisin A susceptibility in these clinical isolates. To evaluate cell surface charge, we performed a cytochrome C binding assay and found no relationship between charge and nisin A susceptibility. Then, we determined the whole genome sequence of each clinical isolate and carried out phylogenetic analysis. The 11 isolates separated into two major clusters, which were consistent with the differences in nisin A susceptibility. Furthermore, we found common differences in several amino acids in the sequences of CprA, CprB, and CprC between the two clusters. Therefore, we speculated that the different amino acid sequences of CprABC might be related to nisin A susceptibility. In addition, C. difficile strains could be divided in the same two groups based on susceptibility to epidermin and mutacin III, which are structurally similar to nisin A. These results suggest that genotypic variations in C. difficile strains confer different susceptibilities to bacteriocins.


Assuntos
Antibacterianos , Proteínas de Bactérias , Clostridioides difficile , Infecções por Clostridium , Farmacorresistência Bacteriana , Nisina , Humanos , Sequência de Aminoácidos , Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nisina/farmacologia , Filogenia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Anaerobe ; 80: 102700, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36716814

RESUMO

OBJECTIVES: Clostridioides difficile is an etiological agent of enteric diseases in humans and animals. Animals are considered a potential reservoir due to the genetic and antimicrobial resistance similarities between human and animal C. difficile isolates. In this study, we evaluated the genetic characteristics and antimicrobial resistance profiles of C. difficile isolated from 942 fecal samples collected from horses in South Korea during 2019-2020. METHODS: The C. difficile isolates were tested for toxin genes including tcdA (A), tcdB (B), and cdtAB (CDT) and deletions of the tcdC gene by PCR. In addition, ribotyping, multilocus sequence typing, and antimicrobial susceptibility tests were performed. RESULTS: Twenty-three (2.4%) C. difficile isolates were associated with diarrhea in foals under 1 year old during the spring-summer period. Of these, 82.6% were toxigenic strains, determined to be A+B+CDT+ (52.1%) or A+B+CDT‒ (30.4%). All isolates were susceptible to metronidazole and vancomycin, and resistant to cefotaxime and gentamicin, and 76.2% were multidrug resistant (MDR). RT078/ST11/Clade 5 was the most common genotype (47.8%), which was also found in animals and humans worldwide. All RT078/ST11/Clade 5 strains were toxigenic and had deletions of the tcdC gene. About half of these strains were resistant to moxifloxacin, and 63.6% were MDR. CONCLUSIONS: C. difficile isolates in this study consisted mostly of toxigenic and MDR strains, and their genetic properties were highly similar to human C. difficile isolates. These results suggest high possibilities of zoonotic transmission and can provide knowledge for establishing strategies for the treatment and prevention of C. difficile infection.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Farmacorresistência Bacteriana , Animais , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/veterinária , Farmacorresistência Bacteriana/genética , Cavalos , Testes de Sensibilidade Microbiana , Prevalência , República da Coreia/epidemiologia , Ribotipagem
7.
Microbiol Spectr ; 10(1): e0132221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019676

RESUMO

Clostridioides difficile, which causes life-threatening diarrheal disease, presents an urgent threat to health care systems. In this study, we present a retrospective genomic and epidemiological analysis of C. difficile in a large teaching hospital. First, we collected 894 nonduplicate fecal samples from patients during a whole year to elucidate the C. difficile molecular epidemiology. We then presented a detailed description of the population structure of C. difficile based on 270 isolates separated between 2015 and 2020 and clarified the genetic and phenotypic features by MIC and whole-genome sequencing. We observed a high carriage rate (19.4%, 173/894) of C. difficile among patients in this hospital. The population structure of C. difficile was diverse with a total of 36 distinct STs assigned. In total, 64.8% (175/270) of the isolates were toxigenic, including four CDT-positive (C. difficile transferase) isolates, and 50.4% (135/268) of the isolates were multidrug-resistant. Statistically, the rates of resistance to erythromycin, moxifloxacin, and rifaximin were higher for nontoxigenic isolates. Although no vancomycin-resistant isolates were detected, the MIC for vancomycin was higher for toxigenic isolates (P < 0.01). The in-hospital transmission was observed, with 43.8% (110/251) of isolates being genetically linked to a prior case. However, no strong correlation was detected between the genetic linkage and epidemiological linkage. Asymptomatic colonized patients play the same role in nosocomial transmission as infected patients, raising the issue of routine screening of C. difficile on admission. This work provides an in-depth description of C. difficile in a hospital setting and paves the way for better surveillance and effective prevention of related diseases in China. IMPORTANCE Clostridioides difficile infections (CDI) are the leading cause of healthcare-associated diarrhea and are known to be resistant to multiple antibiotics. In the past decade, C. difficile has emerged rapidly and has spread globally, causing great concern among American and European countries. However, research on CDI remains limited in China. Here, we characterized the comprehensive spectrum of C. difficile by whole-genome sequencing (WGS) in a Chinese hospital, showing a high detection rate among patients, diverse genome characteristics, a high level of antibiotic resistance, and an unknown nosocomial transmission risk of C. difficile. During the study period, two C. difficile transferase (CDT)-positive isolates belonging to a new multilocus sequence type (ST820) were detected, which have caused serious clinical symptoms. This work describes C. difficile integrally and provides new insight into C. difficile surveillance based on WGS in China.


Assuntos
Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana , Adolescente , Adulto , Idoso , Proteínas de Bactérias/genética , Criança , Pré-Escolar , China/epidemiologia , Clostridioides difficile/classificação , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/transmissão , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/transmissão , Eritromicina/farmacologia , Feminino , Genoma Bacteriano , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Moxifloxacina/farmacologia , Filogenia , Estudos Retrospectivos , Rifaximina/farmacologia , Vancomicina/farmacologia , Sequenciamento Completo do Genoma , Adulto Jovem
8.
Chem Biol Drug Des ; 99(4): 513-526, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918458

RESUMO

Proline racemases (PRAC), catalyzing the l-proline and d-proline interconversion, are essential factors in eukaryotic pathogens such as Trypanosoma cruzi, Trypanosoma vivax, and Clostridioides difficile. If the discovery of irreversible inhibitors of T. cruzi PRAC (TcPRAC) led to innovative therapy of the Chagas disease, no inhibitors of CdPRAC have been discovered to date. However, C. difficile, due to an increased incidence in recent years, is considered as a major cause of health threat. In this work, we have taken into account the similarity between TcPRAC and CdPRAC enzymes to design new inhibitors of CdPRAC. Starting from (E) 4-oxopent-2-enoic acid TcPRAC irreversible inhibitors, we synthesized 4-aryl substituted analogs and evaluated their CdPRAC enzymatic inhibition against eleven strains of C. difficile. This study resulted in promising candidates and allowed for identification of (E)-4-(3-bromothiophen-2-yl)-4-oxobut-2-enoic acid 20 that was chosen for complementary in vivo studies and did not reveal in vivo toxicity.


Assuntos
Isomerases de Aminoácido , Antibacterianos , Clostridioides difficile , Isomerases de Aminoácido/antagonistas & inibidores , Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Prolina
9.
J Bacteriol ; 204(2): e0041121, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34807726

RESUMO

The Gram-positive bacterium Clostridioides difficile is a primary cause of hospital-acquired diarrhea, threatening both immunocompromised and healthy individuals. An important aspect of defining mechanisms that drive C. difficile persistence and virulence relies on developing a more complete understanding of sporulation. C. difficile sporulation is the single determinant of transmission and complicates treatment and prevention due to the chemical and physical resilience of spores. By extension, the identification of druggable targets that significantly attenuate sporulation would have a significant impact on thwarting C. difficile infection. By use of a new CRISPR-Cas9 nickase genome editing methodology, stop codons were inserted early in the coding sequence for clpP1 and clpP2 to generate C. difficile mutants that no longer produced the corresponding isoforms of caseinolytic protease P (ClpP). The data show that genetic ablation of ClpP isoforms leads to altered sporulation phenotypes with the clpP1/clpP2 double mutant exhibiting asporogenic behavior. A small screen of known ClpP inhibitors in a fluorescence-based biochemical assay identified bortezomib as an inhibitor of C. difficile ClpP that produces dose-dependent inhibition of purified ClpP. Incubation of C. difficile cultures in the presence of bortezomib reveals antisporulation effects approaching that observed in the clpP1/clpP2 double mutant. This work identifies ClpP as a key contributor to C. difficile sporulation and provides compelling support for the pursuit of small-molecule ClpP inhibitors as C. difficile antisporulating agents. IMPORTANCE Due to diverse roles of ClpP and the reliance of pathogens upon this system for infection, it has emerged as a target for antimicrobial development. Biology regulated by ClpP is organism dependent and has not been defined in Clostridioides difficile. This work identifies ClpP as a key contributor to C. difficile sporulation and provides compelling support for the pursuit of small-molecule ClpP inhibitors as antisporulating agents. The identification of new approaches and/or drug targets that reduce C. difficile sporulation would be transformative and are expected to find high utility in prophylaxis, transmission attenuation, and relapse prevention. Discovery of the ClpP system as a major driver to sporulation also provides a new avenue of inquiry for advancing the understanding of sporulation.


Assuntos
Proteínas de Bactérias/genética , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Regulação Bacteriana da Expressão Gênica , Esporos Bacterianos/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Bortezomib/farmacologia , Clostridioides difficile/química , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/microbiologia , Edição de Genes/métodos , Humanos , Mutação , Fenótipo , Isoformas de Proteínas/genética , Esporos Bacterianos/metabolismo , Virulência
10.
J Microbiol Biotechnol ; 32(1): 46-55, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34675143

RESUMO

Clostridioides difficile infection (CDI) is a significant cause of hospital-acquired and antibiotic-mediated intestinal diseases and is a growing global public health concern. Overuse of antibiotics and their effect on normal intestinal flora has increased the incidence and severity of infections. Thus, the development of new, effective, and safe treatment options is a high priority. Here, we report a new probiotic strain, Bacillus amyloliquefaciens (BA PMC-80), and its in vitro/in vivo anti-C. difficile effect as a prospective novel candidate for replacing conventional antibiotics. BA PMC-80 showed a significant anti-C. difficile effect in coculture assay, and its cell-free supernatant (CFS) also exhibited a considerable anti-C. difficile effect with an 89.06 µg/ml 50% minimal inhibitory concentration (MIC) in broth microdilution assay. The CFS was stable and equally functional under different pHs, heat, and proteinase treatments. It also exhibited a high sensitivity against current antibiotics and no toxicity in subchronic toxicity testing in hamsters. Finally, BA PMC-80 showed a moderate effect in a hamster CDI model with reduced infection severity and delayed death. However, further studies are required to optimize the treatment condition of the hamster CDI model for better efficacy and identify the antimicrobial compound produced by BA PMC-80.


Assuntos
Antibacterianos/farmacologia , Bacillus amyloliquefaciens/fisiologia , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Probióticos , Animais , Bacillus amyloliquefaciens/classificação , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/isolamento & purificação , Carbono , Clostridioides difficile/crescimento & desenvolvimento , Cricetinae , Modelos Animais de Doenças , Endopeptidases , Alimentos Fermentados/microbiologia , Masculino , Testes de Sensibilidade Microbiana , Peptídeo Hidrolases , Filogenia , RNA Ribossômico 16S/genética
11.
J Appl Microbiol ; 132(2): 1397-1408, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34370377

RESUMO

AIMS: Nisin is a bacteriocin with a broad spectrum of activity against Gram-positive bacteria. The aims were to assess nisin activity against Clostridioides difficile in a complex microbial environment and determine the minimum inhibitory concentration at which C. difficile growth is suppressed whilst having minimal impact on the faecal microbiota. METHODS AND RESULTS: Faecal slurries were prepared from fresh faecal samples and spiked with C. difficile (106  CFU per ml). Nisin was added to each fermentation at a range of concentrations from 0 to 500 µM. Following 24 h, 16S rRNA gene sequencing was performed, and the presence of viable C. difficile was assessed. There was no viable C. difficile detected in the presence of 50-500 µM nisin. There was a decrease in the diversity of the microbiota in a nisin dose-dependent manner. Nisin predominantly depleted the relative abundance of the Gram-positive bacteria whilst the relative abundance of Gram-negative bacteria such as Escherichia Shigella and Bacteroides increased. CONCLUSIONS: Using an ex vivo model of the colon, this study demonstrates the ability of purified nisin to selectively deplete C. difficile in a faecal microbial environment and establishes the minimum concentration at which this occurs whilst having a minimal impact on the composition of the microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY: This study opens up the potential to use nisin as a therapeutic for clostridial gut infections.


Assuntos
Clostridioides difficile , Microbioma Gastrointestinal , Nisina , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium , Colo , Fezes , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Nisina/farmacologia , RNA Ribossômico 16S/genética
12.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34908523

RESUMO

Clostridioides difficile (formerly Clostridium difficile) colonizes the gastrointestinal tract following disruption of the microbiota and can initiate a spectrum of clinical manifestations ranging from asymptomatic to life-threatening colitis. Following antibiotic treatment, luminal oxygen concentrations increase, exposing gut microbes to potentially toxic reactive oxygen species. Though typically regarded as a strict anaerobe, C. difficile can grow at low oxygen concentrations. How this bacterium adapts to a microaerobic environment and whether those responses to oxygen are conserved amongst strains is not entirely understood. Here, two C. difficile strains (630 and CD196) were cultured in 1.5% oxygen and the transcriptional response to long-term oxygen exposure was evaluated via RNA-sequencing. During growth in a microaerobic environment, several genes predicted to protect against oxidative stress were upregulated, including those for rubrerythrins and rubredoxins. Transcription of genes involved in metal homeostasis was also positively correlated with increased oxygen levels and these genes were amongst the most differentially transcribed. To directly compare the transcriptional landscape between C. difficile strains, a 'consensus-genome' was generated. On the basis of the identified conserved genes, basal transcriptional differences as well as variations in the response to oxygen were evaluated. While several responses were similar between the strains, there were significant differences in the abundance of transcripts involved in amino acid and carbohydrate metabolism. Furthermore, intracellular metal concentrations significantly varied both in an oxygen-dependent and oxygen-independent manner. Overall, these results indicate that C. difficile adapts to grow in a low oxygen environment through transcriptional changes, though the specific strategy employed varies between strains.


Assuntos
Proteínas de Bactérias/genética , Clostridioides difficile/classificação , Trato Gastrointestinal/microbiologia , Perfilação da Expressão Gênica/métodos , Oxigênio/farmacologia , Animais , Antibacterianos/farmacologia , Metabolismo dos Carboidratos , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Clostridioides difficile/isolamento & purificação , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Estresse Oxidativo , Análise de Sequência de RNA
13.
Nat Commun ; 12(1): 6285, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725358

RESUMO

Clostridium difficile causes life-threatening diarrhea and is the leading cause of healthcare-associated bacterial infections in the United States. TcdA and TcdB bacterial toxins are primary determinants of disease pathogenesis and are attractive therapeutic targets. TcdA and TcdB contain domains that use UDP-glucose to glucosylate and inactivate host Rho GTPases, resulting in cytoskeletal changes causing cell rounding and loss of intestinal integrity. Transition state analysis revealed glucocationic character for the TcdA and TcdB transition states. We identified transition state analogue inhibitors and characterized them by kinetic, thermodynamic and structural analysis. Iminosugars, isofagomine and noeuromycin mimic the transition state and inhibit both TcdA and TcdB by forming ternary complexes with Tcd and UDP, a product of the TcdA- and TcdB-catalyzed reactions. Both iminosugars prevent TcdA- and TcdB-induced cytotoxicity in cultured mammalian cells by preventing glucosylation of Rho GTPases. Iminosugar transition state analogues of the Tcd toxins show potential as therapeutics for C. difficile pathology.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/antagonistas & inibidores , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/enzimologia , Infecções por Clostridium/microbiologia , Enterotoxinas/antagonistas & inibidores , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridioides difficile/química , Clostridioides difficile/genética , Enterotoxinas/química , Enterotoxinas/metabolismo , Humanos , Cinética
14.
Bioorg Med Chem ; 52: 116503, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34837818

RESUMO

Chenodeoxycholic acid (CDCA) is a natural germination inhibitor for C. difficile spores. In our previous study (J. Med. Chem., 2018, 61, 6759-6778), we identified N-phenyl-3α,7α,12α-trihydroxy-5ß-cholan-24-amide as an inhibitor of C. difficile strain R20291 with an IC50 of 1.8 µM. Studies of bile salts on spore germination have shown that chenodeoxycholate, ursodeoxycholate and lithocholate are more potent inhibitors of germination compared to cholate. Given this, we created amide analogs of chenodeoxycholic, deoxycholic, lithocholic and ursodeoxycholic acids using amines identified from our previous studies. We found that chenodeoxy- and deoxycholate derivatives were active with potencies equivalent to those for cholanamides. This indicates that only 2 out of the 3 hydroxyl groups are needed for activity and that the alpha stereochemistry at position 7 is required for inhibition of spore germination.


Assuntos
Antibacterianos/farmacologia , Colanos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Colanos/síntese química , Colanos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
15.
mSphere ; 6(5): e0066921, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34704776

RESUMO

Clostridioides difficile infection (CDI) is the most common hospital-acquired infection in the United States. Antibiotic-induced dysbiosis is the primary cause of susceptibility, and fecal microbiota transplantation (FMT) has emerged as an effective therapy for recurrence. We previously demonstrated in the mouse model of CDI that antibiotic-induced dysbiosis reduced colonic expression of interleukin 25 (IL-25) and that FMT protected in part by restoring IL-25 signaling. Here, we conducted a prospective study in humans to test if FMT induced IL-25 expression in the colons of patients with recurrent CDI (rCDI). Colonic biopsy specimens and blood were collected at the time of FMT and 60 days later. Colon biopsy specimens were analyzed for IL-25 protein levels, total tissue transcriptome, and epithelium-associated microbiota before and after FMT, and peripheral immune cells were immunophenotyped. FMT increased alpha diversity of the colonic microbiota and levels of IL-25 in colonic tissue. In addition, FMT increased expression of homeostatic genes and repressed inflammatory genes. Finally, circulating Th17 cells were decreased post-FMT. The increase in levels of the cytokine IL-25 accompanied by decreased inflammation is consistent with FMT acting in part to protect from recurrent CDI via restoration of commensal activation of type 2 immunity. IMPORTANCE Fecal microbiota transplantation (FMT) is an effective treatment for C. difficile infection for most patients; however, introducing a complex mixture of microbes also has had unintended consequences for some patients. Attempts to create a standardized probiotic therapeutic that recapitulates the efficacy of FMT have been unsuccessful to date. We sought to understand what immune markers are changed in patients undergoing FMT to treat recurrent C. difficile infection and identified an immune signaling molecule, IL-25, that was restored by FMT. This finding indicates that adjunctive therapy with IL-25 could be useful in treating C. difficile infection.


Assuntos
Infecções por Clostridium/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Interleucina-17/metabolismo , Idoso , Antibacterianos/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/patogenicidade , Infecções por Clostridium/metabolismo , Infecções por Clostridium/microbiologia , Colo/patologia , Fezes/microbiologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/terapia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Recidiva , Resultado do Tratamento
16.
Microbiol Spectr ; 9(2): e0144021, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612686

RESUMO

Clostridioides difficile infection represents a growing clinical challenge. The new compound omadacycline is a potential treatment alternative, as many antibiotics have limited activity or are rarely used due to costs and side effects. The activity of omadacycline and five comparators was assessed with agar dilution on a 2015-to-2018 collection of 65 C. difficile isolates from Sweden. Omadacycline demonstrated in vitro activity against the contemporary ribotypes of C. difficile, and further clinical investigation is needed. IMPORTANCE Evaluating the activity of novel antimicrobials like omadacycline is of great interest, as a reliable and efficient antimicrobial treatment for Clostridioides difficile infections is in demand.


Assuntos
Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/isolamento & purificação , Tetraciclinas/farmacologia , Clostridioides difficile/classificação , Clostridioides difficile/genética , Infecções por Clostridium , Humanos , Testes de Sensibilidade Microbiana , Ribotipagem , Suécia
17.
Nature ; 599(7883): 120-124, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34646011

RESUMO

Antibiotics are used to fight pathogens but also target commensal bacteria, disturbing the composition of gut microbiota and causing dysbiosis and disease1. Despite this well-known collateral damage, the activity spectrum of different antibiotic classes on gut bacteria remains poorly characterized. Here we characterize further 144 antibiotics from a previous screen of more than 1,000 drugs on 38 representative human gut microbiome species2. Antibiotic classes exhibited distinct inhibition spectra, including generation dependence for quinolones and phylogeny independence for ß-lactams. Macrolides and tetracyclines, both prototypic bacteriostatic protein synthesis inhibitors, inhibited nearly all commensals tested but also killed several species. Killed bacteria were more readily eliminated from in vitro communities than those inhibited. This species-specific killing activity challenges the long-standing distinction between bactericidal and bacteriostatic antibiotic classes and provides a possible explanation for the strong effect of macrolides on animal3-5 and human6,7 gut microbiomes. To mitigate this collateral damage of macrolides and tetracyclines, we screened for drugs that specifically antagonized the antibiotic activity against abundant Bacteroides species but not against relevant pathogens. Such antidotes selectively protected Bacteroides species from erythromycin treatment in human-stool-derived communities and gnotobiotic mice. These findings illluminate the activity spectra of antibiotics in commensal bacteria and suggest strategies to circumvent their adverse effects on the gut microbiota.


Assuntos
Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antibacterianos/classificação , Bactérias/classificação , Bactérias Anaeróbias/efeitos dos fármacos , Bacteroides/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Dicumarol/farmacologia , Eritromicina/farmacologia , Fezes/microbiologia , Feminino , Vida Livre de Germes , Humanos , Macrolídeos/farmacologia , Masculino , Camundongos , Microbiota/efeitos dos fármacos , Simbiose/efeitos dos fármacos , Tetraciclinas/farmacologia
18.
PLoS One ; 16(10): e0258690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34648594

RESUMO

BACKGROUND: Institution-specific guidelines (ISGs) within the framework of antimicrobial stewardship programs offer locally tailored decision support taking into account local pathogen and resistance epidemiology as well as national and international guidelines. OBJECTIVES: To assess the impact of ISGs for antimicrobial therapy on antibiotic consumption and subsequent changes in resistance rates and Clostridioides difficile infections (CDIs). METHODS: The study was conducted at the Leipzig University Hospital, a 1,451-bed tertiary-care medical center, and covered the years 2012 to 2020. Since 2014, ISGs were provided to optimize empirical therapies, appropriate diagnostics, and antimicrobial prophylaxis. We used interrupted time series analysis (ITSA) and simple linear regression to analyze changes in antimicrobial consumption, resistance and CDIs. RESULTS: Over the study period, 1,672,200 defined daily doses (DDD) of antibiotics were dispensed, and 85,645 bacterial isolates as well as 2,576 positive C. difficile cultures were collected. Total antimicrobial consumption decreased by 14% from 2012 to 2020, without clear impact of the deployment of ISGs. However, implementation of ISGs was associated with significant decreases in the use of substances that were rarely recommended (e.g., fluoroquinolones). Over the whole study period, we observed declining resistance rates to most antibiotic classes of up to 25% in Enterobacterales, staphylococci, and Pseudomonas aeruginosa. Switching from ceftriaxone to cefotaxime was associated with reduced resistance to third-generation cephalosporins. The number of CDI cases fell by 65%, from 501 in 2012 to 174 in 2020. CONCLUSIONS: Well-implemented ISGs can have a significant, immediate, and lasting impact on the prescription behavior. ISGs might thereby contribute to reduce resistance rates and CDI incidences in the hospital setting.


Assuntos
Gestão de Antimicrobianos/organização & administração , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/tratamento farmacológico , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Alemanha , Humanos , Análise de Séries Temporais Interrompida , Modelos Lineares , Guias de Prática Clínica como Assunto , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Centros de Atenção Terciária
19.
PLoS One ; 16(10): e0258207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34597343

RESUMO

The rapid evolution of antibiotic resistance in Clostridioides difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are matters of concern for public health. Thioridazine, a compound belonging to the phenothiazine group, has previous shown antimicrobial activity against C. difficile. The purpose of this present study was to investigate the potential of a novel phenothiazine derivative, JBC 1847, as an oral antimicrobial for treatment of intestinal pathogens and CDIs. The minimal inhibition concentration and the minimum bactericidal concentration of JBC 1847 against C. difficile ATCC 43255 were determined 4 µg/mL and high tolerance after oral administration in mice was observed (up to 100 mg/kg bodyweight). Pharmacokinetic modeling was conducted in silico using GastroPlusTM, predicting low (< 10%) systemic uptake after oral exposure and corresponding low Cmax in plasma. Impact on the intestinal bacterial composition after four days of treatment was determined by 16s rRNA MiSeq sequencing and revealed only minor impact on the microbiota in non-clinically affected mice, and there was no difference between colony-forming unit (CFU)/gram fecal material between JBC 1847 and placebo treated mice. The cytotoxicity of the compound was assessed in Caco-2 cell-line assays, in which indication of toxicity was not observed in concentrations up to seven times the minimal bactericidal concentration. In conclusion, the novel phenothiazine derivative demonstrated high antimicrobial activity against C. difficile, had low predicted gastrointestinal absorption, low intestinal (in vitro) cytotoxicity, and only induced minor changes of the healthy microbiota, altogether supporting that JBC 1847 could represent a novel antimicrobial candidate. The clinical importance hereof calls for future experimental studies in CDI models.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Fenotiazinas/farmacologia , Administração Oral , Animais , Células CACO-2 , Clostridioides difficile/patogenicidade , Infecções por Clostridium/genética , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Camundongos , RNA Ribossômico 16S/genética
20.
mSphere ; 6(5): e0062921, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34585964

RESUMO

Antibiotics are a major risk factor for Clostridioides difficile infections (CDIs) because of their impact on the microbiota. However, nonantibiotic medications such as the ubiquitous osmotic laxative polyethylene glycol 3350 (PEG 3350) also alter the microbiota. Clinicians also hypothesize that PEG helps clear C. difficile. But whether PEG impacts CDI susceptibility and clearance is unclear. To examine how PEG impacts susceptibility, we treated C57BL/6 mice with 5-day and 1-day doses of 15% PEG in the drinking water and then challenged the mice with C. difficile 630. We used clindamycin-treated mice as a control because they consistently clear C. difficile within 10 days postchallenge. PEG treatment alone was sufficient to render mice susceptible, and 5-day PEG-treated mice remained colonized for up to 30 days postchallenge. In contrast, 1-day PEG-treated mice were transiently colonized, clearing C. difficile within 7 days postchallenge. To examine how PEG treatment impacts clearance, we administered a 1-day PEG treatment to clindamycin-treated, C. difficile-challenged mice. Administering PEG to mice after C. difficile challenge prolonged colonization up to 30 days postchallenge. When we trained a random forest model with community data from 5 days postchallenge, we were able to predict which mice would exhibit prolonged colonization (area under the receiver operating characteristic curve [AUROC] = 0.90). Examining the dynamics of these bacterial populations during the postchallenge period revealed patterns in the relative abundances of Bacteroides, Enterobacteriaceae, Porphyromonadaceae, Lachnospiraceae, and Akkermansia that were associated with prolonged C. difficile colonization in PEG-treated mice. Thus, the osmotic laxative PEG rendered mice susceptible to C. difficile colonization and hindered clearance. IMPORTANCE Diarrheal samples from patients taking laxatives are typically rejected for Clostridioides difficile testing. However, there are similarities between the bacterial communities from people with diarrhea and those with C. difficile infections (CDIs), including lower diversity than the communities from healthy patients. This observation led us to hypothesize that diarrhea may be an indicator of C. difficile susceptibility. We explored how osmotic laxatives disrupt the microbiota's colonization resistance to C. difficile by administering a laxative to mice either before or after C. difficile challenge. Our findings suggest that osmotic laxatives disrupt colonization resistance to C. difficile and prevent clearance among mice already colonized with C. difficile. Considering that most hospitals recommend not performing C. difficile testing on patients taking laxatives, and laxatives are prescribed prior to administering fecal microbiota transplants via colonoscopy to patients with recurrent CDIs, further studies are needed to evaluate if laxatives impact microbiota colonization resistance in humans.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/fisiologia , Infecções por Clostridium/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Laxantes/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Clindamicina/uso terapêutico , Infecções por Clostridium/microbiologia , Infecções por Clostridium/prevenção & controle , Suscetibilidade a Doenças , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Polietilenoglicóis/uso terapêutico , RNA Ribossômico 16S/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...